Subshell Electronic Configuration

Shell \rightarrow Sub shell \rightarrow Orbital 1^{s+} shell \rightarrow 1^{s^2} 2^{s} 2^{s} 1^{s+} shell \rightarrow 1^{s^2} 2^{rd} shell \rightarrow 2^{s^2} 2^{s} 2^{rd} shell \rightarrow 2^{s^2} 3^{s^2} 3^{s^2} 3^{s^2} 4^{rh} shell \rightarrow 4^{s^2} 4^{rh} 4^{s^2} 4^{rh}

Configuration: 18² 28²29⁶ 38²39⁶ 48²3d¹⁰⁻

Hunds rule - pairing of electrons in a orbital happen only after filling individually in the dege nearte (similiar energy) orbitals

Pauli's Exclusion Principle ; an orbital can have maximum 2 electrons or

- 18 This question is about the element sulfur.
 - (a) Complete the diagram to show the electronic configuration for a sulfur atom in the ground state. Include labels for each subshell.

(b) Write an equation for the **first** ionisation energy of sulfur. Include state symbols.

6 A p-block element in **Period 3** of the Periodic Table reacts to form an ionic compound.

What could be the electronic configuration of the **ion** formed by this element?

(2)

(2)

	The renoale table of Elements																	
	1	2											3	4	5	6	7	0 (8)
				3	blod			1.0 H hydrogen]					p-	bloch	× -		(18) 4.0 He
	(1)	(2)			Key			1	J				(13)	(14)	(15)	(16)	(17)	2
	6.9	9.0		relat	ive atomic	mass							10.8	12.0	14.0	16.0	19.0	20.2
	Li	Be		ato	name	ibol							B	C	N	O	F	neon
9	3	4		atomic	(proton)	number			1	_			5	6	7	8	9	10
3	23.0	24.3	2		1		1	6	olve			31	27.0	28.1	31.0	32.1	35.5	39.9
	sodium	magnesium	(2)	ň			0			(10)		(12)	aluminium	silicon	phosphorus	sulfur	chlorine	argon
	11	12	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	13	14	15	16	17	18
4	> K	40 Ca	45.0 Sc	47.9 Ti	50.9 V	52.0 Cr	54.9 Mn	55.8 Fe	58.9 Co	58.7 Ni	63.5 Cu	65.4 Zn	TPGa'	Ge	As	79.0 Se	<i>B</i> r €	Kr
	otassium	calcium	candium	titanium	vanadium	chromium	manganese	iron	cobalt	nickel	copper	zinc	gallium	germanium	arsenic	selenium	bromine	krypton
	19	87.6	21 88.9	91.2	97.9	95.9	25	101.1	102.9	106.4	107.9	30	114.8	32	171.8	127.6	126.9	131.3
	Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	I	Xe
	rubidium 37	strontium 38	yttrium	zirconium 40	niobium 41	molybdenum	technetium 43	ruthenium 44	rhodium 45	palladium	silver 47	cadmium 48	indium	tin 50	antimony 51	tellurium 52	iodine 53	xenon 54
	132.9	137.3	138.9	178.5	180.9	183.8	186.2	190.2	192.2	195.1	197.0	200.6	204.4	207.2	209.0	[209]	[210]	[222]
	Cs	Ba	La*	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	тι	Pb	Bi	Po	At	Rn
	55	56	57	hatnium 72	tantalum 73	tungsten 74	rhenium 75	osmium 76	Tridium	78	gold 79	80	thallium 81	lead 82	bismuth 83	polonium 84	astatine 85	radon 86
	[223]	[226]	[227]	[261]	[262]	[266]	[264]	[277]	[268]	[271]	[272]							
	Fr francium	Ra	Ac*	Rf	Db dubnium	Sg	Bh	Hs	Mt	Ds	Rg	Eler	ments with	atomic nu	mbers 112- fully auther	116 have	been repor	rted
	07	00	89	104	105	106	107	108	109	110	111			but not	any accre			
				140	141	144	[147]	150	152	157	159	163	165	167	169	173	175	
6	6 Which ion has the electronic configuration $1s^2 2s^2 2p^6 3s^2 3p^6$ in its ground state? $ \boxed{A} Al^{3+} \qquad s^2 2s^2 2p^6 \\ \boxed{B}_{11} Cl^{-1} \qquad cNe] 3s^2 3p^5 + 1 \\ \boxed{C} N^{3-} \qquad s^2 2s^2 2p^3 + 3 \\ \boxed{D} Na^+ \\ 1 \qquad s^2 2s^2 2p^5 3k^7 $ (Total for Question 6 = 1 mark)																	
12	 (a) Complete the electronic configurations of the atoms of beryllium and calcium using the s, p, d notation. 																	
				2									(4)	N				

- 12 This question is about the chlorides of beryllium and calcium.
 - (a) Complete the electronic configurations of the atoms of beryllium and calcium using the s, p, d notation.

Be $1s^2$ $2s^2$

Ca 15² 25² 2p⁶ 35² 3p⁶ 45²

Use this space for any rough working. Anything you write in this space will gain no credit.

4	What is the electronic	configuration of	of an oxygen	atom in its ground state?
---	------------------------	------------------	--------------	---------------------------

		1s	2s	2p _x	2p _y	2p _z	3s
\times	Α	↑↓	$\uparrow \downarrow$	$\uparrow \downarrow$	↑↓		
\times	В	↑↓	$\uparrow \downarrow$	$(\uparrow\uparrow)$	$\supset \uparrow$	1	
\times	ç	↑↓	$\uparrow \downarrow$	↑	↑	1	Ŷ
	D	$\uparrow \downarrow$	$\uparrow \downarrow$	$\uparrow \downarrow$	↑	1	

(Total for Question 4 = 1 mark)

Ionisation En

Energy required to remove valance electron from an isolated gaseous atom

4th ionisation enrgy of Aluminum will show big jump from 3rd to 4th KIonisation energy.

down in a group: Atomic number increases, number of shells increases, becasue of this, nuclear attraction on the valance electron dec reases and atomic siza increases.

across the period, atomic number increases, but the number of shell is remains fixed. also nulcear charge increases so the atomic size decreases.

-
- 14 This question is about barium and barium compounds.
 - (a) The graph shows the first eight ionisation energies of barium.

(i) Write an equation, including state symbols, for the **third** ionisation energy of barium.

(1)

(ii) State how the graph confirms that barium is in Group 2 in the Periodic Table.

					(1)
Jump	פו`	T·E	from	2-33	

11 The graph shows the first ionisation energies of some consecutive elements from Periods 2 and 3 of the Periodic Table.

The letters used to label the elements are **not** their chemical symbols.

(a) The first ionisation energies of the Period 2 elements are shown.

(i) Give an equation that represents the first ionisation energy of lithium. Include state symbols.

(ii) Explain why there is a general increase in the first ionisation energy across the period.

Strong Athanting

(iii) Explain why the first ionisation energy of oxygen is lower than that of nitrogen.

(b) All the successive ionisation energies of nitrogen are shown in the table.

lonisation number	1	2	3	4	5	6	7
lonisation energy / kJ mol ⁻¹	1402	2856	4578	7475	9445	53267	64360

Explain the trend in the successive ionisation energies of nitrogen.

(2)

(1)

(2)

